p-group, metabelian, nilpotent (class 2), monomial
Aliases: C23.63C24, C22.122C25, C42.105C23, C24.142C23, C22.112+ 1+4, C4⋊Q8⋊37C22, D4⋊5D4⋊28C2, D4⋊6D4⋊31C2, (C4×D4)⋊57C22, (C4×Q8)⋊55C22, C4⋊1D4⋊21C22, C4⋊D4⋊90C22, C23⋊3D4⋊10C2, C4⋊C4.310C23, (C2×C4).112C24, (C23×C4)⋊48C22, C22⋊Q8⋊41C22, C22≀C2⋊12C22, C42⋊2C2⋊9C22, (C2×D4).314C23, C4.4D4⋊33C22, C22⋊C4.40C23, (C2×Q8).299C23, C42.C2⋊16C22, C22.19C24⋊36C2, C22.32C24⋊11C2, C22.29C24⋊27C2, C42⋊C2⋊50C22, C22.54C24⋊3C2, (C22×C4).382C23, C22.45C24⋊13C2, C2.51(C2×2+ 1+4), C2.43(C2.C25), C22.56C24⋊2C2, C22.57C24⋊4C2, (C22×D4).435C22, C22.D4⋊13C22, C22.33C24⋊10C2, C22.36C24⋊24C2, C22.46C24⋊27C2, C22.34C24⋊16C2, C22.53C24⋊19C2, C22.47C24⋊26C2, (C2×C4⋊C4)⋊82C22, (C2×C4○D4)⋊41C22, (C2×C22⋊C4)⋊57C22, (C2×C22.D4)⋊64C2, SmallGroup(128,2265)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C22.122C25
G = < a,b,c,d,e,f,g | a2=b2=c2=d2=f2=g2=1, e2=a, ab=ba, dcd=gcg=ac=ca, fdf=ad=da, ae=ea, af=fa, ag=ga, ece-1=fcf=bc=cb, ede-1=bd=db, be=eb, bf=fb, bg=gb, dg=gd, ef=fe, eg=ge, fg=gf >
Subgroups: 860 in 530 conjugacy classes, 380 normal (56 characteristic)
C1, C2, C2, C2, C4, C22, C22, C22, C2×C4, C2×C4, C2×C4, D4, Q8, C23, C23, C23, C42, C42, C22⋊C4, C22⋊C4, C4⋊C4, C22×C4, C22×C4, C22×C4, C2×D4, C2×D4, C2×D4, C2×Q8, C2×Q8, C4○D4, C24, C2×C22⋊C4, C2×C22⋊C4, C2×C4⋊C4, C42⋊C2, C42⋊C2, C4×D4, C4×Q8, C22≀C2, C22≀C2, C4⋊D4, C22⋊Q8, C22.D4, C22.D4, C4.4D4, C4.4D4, C42.C2, C42⋊2C2, C4⋊1D4, C4⋊Q8, C23×C4, C22×D4, C2×C4○D4, C2×C4○D4, C2×C22.D4, C22.19C24, C23⋊3D4, C22.29C24, C22.32C24, C22.33C24, C22.34C24, C22.36C24, D4⋊5D4, D4⋊6D4, C22.45C24, C22.45C24, C22.46C24, C22.47C24, C22.53C24, C22.54C24, C22.56C24, C22.57C24, C22.122C25
Quotients: C1, C2, C22, C23, C24, 2+ 1+4, C25, C2×2+ 1+4, C2.C25, C22.122C25
(1 3)(2 4)(5 7)(6 8)(9 11)(10 12)(13 15)(14 16)(17 19)(18 20)(21 23)(22 24)(25 27)(26 28)(29 31)(30 32)
(1 15)(2 16)(3 13)(4 14)(5 20)(6 17)(7 18)(8 19)(9 24)(10 21)(11 22)(12 23)(25 30)(26 31)(27 32)(28 29)
(1 31)(2 27)(3 29)(4 25)(5 12)(6 24)(7 10)(8 22)(9 17)(11 19)(13 28)(14 30)(15 26)(16 32)(18 21)(20 23)
(2 16)(4 14)(5 7)(6 19)(8 17)(9 24)(11 22)(18 20)(25 32)(26 28)(27 30)(29 31)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)
(1 7)(2 8)(3 5)(4 6)(9 25)(10 26)(11 27)(12 28)(13 20)(14 17)(15 18)(16 19)(21 31)(22 32)(23 29)(24 30)
(9 11)(10 12)(21 23)(22 24)(25 27)(26 28)(29 31)(30 32)
G:=sub<Sym(32)| (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32), (1,15)(2,16)(3,13)(4,14)(5,20)(6,17)(7,18)(8,19)(9,24)(10,21)(11,22)(12,23)(25,30)(26,31)(27,32)(28,29), (1,31)(2,27)(3,29)(4,25)(5,12)(6,24)(7,10)(8,22)(9,17)(11,19)(13,28)(14,30)(15,26)(16,32)(18,21)(20,23), (2,16)(4,14)(5,7)(6,19)(8,17)(9,24)(11,22)(18,20)(25,32)(26,28)(27,30)(29,31), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,7)(2,8)(3,5)(4,6)(9,25)(10,26)(11,27)(12,28)(13,20)(14,17)(15,18)(16,19)(21,31)(22,32)(23,29)(24,30), (9,11)(10,12)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32)>;
G:=Group( (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32), (1,15)(2,16)(3,13)(4,14)(5,20)(6,17)(7,18)(8,19)(9,24)(10,21)(11,22)(12,23)(25,30)(26,31)(27,32)(28,29), (1,31)(2,27)(3,29)(4,25)(5,12)(6,24)(7,10)(8,22)(9,17)(11,19)(13,28)(14,30)(15,26)(16,32)(18,21)(20,23), (2,16)(4,14)(5,7)(6,19)(8,17)(9,24)(11,22)(18,20)(25,32)(26,28)(27,30)(29,31), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,7)(2,8)(3,5)(4,6)(9,25)(10,26)(11,27)(12,28)(13,20)(14,17)(15,18)(16,19)(21,31)(22,32)(23,29)(24,30), (9,11)(10,12)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32) );
G=PermutationGroup([[(1,3),(2,4),(5,7),(6,8),(9,11),(10,12),(13,15),(14,16),(17,19),(18,20),(21,23),(22,24),(25,27),(26,28),(29,31),(30,32)], [(1,15),(2,16),(3,13),(4,14),(5,20),(6,17),(7,18),(8,19),(9,24),(10,21),(11,22),(12,23),(25,30),(26,31),(27,32),(28,29)], [(1,31),(2,27),(3,29),(4,25),(5,12),(6,24),(7,10),(8,22),(9,17),(11,19),(13,28),(14,30),(15,26),(16,32),(18,21),(20,23)], [(2,16),(4,14),(5,7),(6,19),(8,17),(9,24),(11,22),(18,20),(25,32),(26,28),(27,30),(29,31)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32)], [(1,7),(2,8),(3,5),(4,6),(9,25),(10,26),(11,27),(12,28),(13,20),(14,17),(15,18),(16,19),(21,31),(22,32),(23,29),(24,30)], [(9,11),(10,12),(21,23),(22,24),(25,27),(26,28),(29,31),(30,32)]])
38 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | ··· | 2M | 4A | 4B | 4C | 4D | 4E | ··· | 4X |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | ··· | 2 | 4 | 4 | 4 | 4 | 4 | ··· | 4 |
size | 1 | 1 | 1 | 1 | 2 | 2 | 4 | ··· | 4 | 2 | 2 | 2 | 2 | 4 | ··· | 4 |
38 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | |
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | 2+ 1+4 | C2.C25 |
kernel | C22.122C25 | C2×C22.D4 | C22.19C24 | C23⋊3D4 | C22.29C24 | C22.32C24 | C22.33C24 | C22.34C24 | C22.36C24 | D4⋊5D4 | D4⋊6D4 | C22.45C24 | C22.46C24 | C22.47C24 | C22.53C24 | C22.54C24 | C22.56C24 | C22.57C24 | C22 | C2 |
# reps | 1 | 1 | 2 | 1 | 1 | 4 | 2 | 2 | 2 | 2 | 2 | 3 | 2 | 2 | 1 | 1 | 2 | 1 | 2 | 4 |
Matrix representation of C22.122C25 ►in GL8(𝔽5)
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 |
4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 |
0 | 1 | 3 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 3 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 3 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 1 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 3 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 4 | 4 | 4 | 1 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 4 | 0 | 0 | 0 | 0 |
0 | 1 | 4 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 2 | 2 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 3 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 3 | 3 | 4 |
0 | 0 | 0 | 0 | 0 | 3 | 0 | 2 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 4 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 4 | 4 | 2 |
0 | 0 | 0 | 0 | 0 | 4 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 4 |
G:=sub<GL(8,GF(5))| [1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4],[4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4],[0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,3,0,0,4,0,0,0,0,0,3,4,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,3,0,4],[1,0,0,1,0,0,0,0,0,4,4,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,1,3,0,4,0,0,0,0,0,4,0,4,0,0,0,0,0,0,4,4,0,0,0,0,0,0,0,1],[0,1,1,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,2,3,3,3,0,0,0,0,0,0,3,0,0,0,0,0,0,0,4,2],[1,0,0,1,0,0,0,0,0,1,1,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,4,4,4,0,0,0,0,0,0,4,0,0,0,0,0,0,0,2,1],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4] >;
C22.122C25 in GAP, Magma, Sage, TeX
C_2^2._{122}C_2^5
% in TeX
G:=Group("C2^2.122C2^5");
// GroupNames label
G:=SmallGroup(128,2265);
// by ID
G=gap.SmallGroup(128,2265);
# by ID
G:=PCGroup([7,-2,2,2,2,2,-2,2,477,1430,723,184,2019,570,1684]);
// Polycyclic
G:=Group<a,b,c,d,e,f,g|a^2=b^2=c^2=d^2=f^2=g^2=1,e^2=a,a*b=b*a,d*c*d=g*c*g=a*c=c*a,f*d*f=a*d=d*a,a*e=e*a,a*f=f*a,a*g=g*a,e*c*e^-1=f*c*f=b*c=c*b,e*d*e^-1=b*d=d*b,b*e=e*b,b*f=f*b,b*g=g*b,d*g=g*d,e*f=f*e,e*g=g*e,f*g=g*f>;
// generators/relations